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Abstract. The recently published E865 data on charged Ke4 decays and ππ phases are reanalyzed to
extract values of the two S-wave scattering lengths, of the subthreshold parameters α and β, of the low-
energy constants �̄3 and �̄4 as well as of the main two-flavour order parameters: 〈ūu〉 and Fπ in the limit
mu = md = 0 taken at the physical value of the strange quark mass. Our analysis is exclusively based on
direct experimental information on ππ phases below 800 MeV and on the new solutions of the Roy equations
by Ananthanarayan et al. The result is compared with the theoretical prediction relating 2a0

0 − 5a2
0 and

the scalar radius of the pion, which was obtained in two-loop Chiral Perturbation Theory. A discrepancy
at the 1-σ level is found and commented upon.

1 Introduction

Recently, a new measurement of K+
e4 decay and of the ππ

phase shift difference δ00−δ11 has been published [1] by the
Brookhaven E865 collaboration. New low-energy ππ scat-
tering data constitute a rare event which has not happened
since the last Geneva-Saclay experiment 25 years ago [2],
and the corresponding determination of the isoscalar S-
wave scattering length a00 = 0.26 ± 0.05. The new exper-
iment [1] improves the statistics by more than a factor
of 10, and the outcome for a00 is not only more accu-
rate, but also points towards a smaller central value as
expected by the standard version of Chiral Perturbation
Theory (χPT) [3]. It is crucial to know the two S-wave
scattering lengths a00 and a20 as precisely as possible and to
avoid confusing their model-independent extraction from
the data on one hand with theoretical χPT-based pre-
dictions on the other hand. This is the main purpose
of the present paper. The principal model-independent
tools of our analysis are Roy equations [4] and their re-
cent solution by Ananthanarayan, Colangelo, Gasser and
Leutwyler (ACGL) [5]. In a suitable kinematical range,
Roy equations represent a rigorous consequence of gen-
eral properties of the scattering amplitude: analyticity,
unitarity, crossing symmetry and asymptotic bounds. The
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ACGL solution uniquely fixes the three phases relevant at
low energies, δ00(E), δ11(E), δ20(E) for E < E0 = 800 MeV
in terms of the two scattering lengths a00 and a20, and ex-
perimental data above s0 = E2

0 . In this way, sufficiently
precise data on phase shifts for 2Mπ < E < E0 can be
converted into a model-independent determination of the
two S-wave scattering lengths. Conversely, the knowledge
of a00 and a20 allows one to determine any other low-energy
ππ observables which might be needed for a theoretical in-
terpretation of experimental results in terms of the chiral
structure of QCD vacuum. Unfortunately, the combina-
tion δ00 − δ11 near threshold (which is measured in Ke4
experiments) is not strongly sensitive to a20, for a given
a00, even if the former is allowed to vary over the whole
Universal Band (UB). This can be seen explicitly, for in-
stance, from the ACGL solutions of Roy equations. We
will show (Sect. 3) that a model-independent and rela-
tively accurate determination of both S-wave scattering
lengths is nevertheless possible, if the existing Ke4 data
on δ00 − δ11 are combined with the older production data
by Hoogland et al. [6] and by Losty et al. [7], concerning
the I = 2 S-wave for E < 800 MeV. Our result reads
a00 = 0.228± 0.012, a20 = −0.0382± 0.0038. Subsequently
(Sect. 4), Roy equations will be used once more to convert
the S-wave scattering lengths into the determination of
the subthreshold parameters α and β (as well as λ1 . . . λ4)
introduced in [8] and under a different name (b1 . . . b6) in
[9]. The expansion of the parameters α and β in powers
of quark mass converges more rapidly than in the case of
scattering lengths. The knowledge of subthreshold param-
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eters is therefore used to extract the low-energy constants
(LEC’s) �̄3 and �̄4, as well as the main two-flavour order
parameters (Sects. 5 and 6). All this analysis is based on
existing solutions of Roy equations as given by ACGL in
[5]. In parallel, we construct an extended solution of Roy
equations, incorporating the dependence on the value of
phase shifts at the matching point E0 = 800 MeV. This
allows the control of the propagation of errors arising from
the intermediate energy data, which was not possible us-
ing the published ACGL solution of [5]. Finally, our model-
independent determination of scattering lengths and other
low-energy parameters is compared with the theoretical
prediction of the tight correlation between 2a00 − 5a20 and
the scalar radius of the pion 〈r2〉s [10]. If the latter predic-
tion is combined with the E865 data alone [1], one obtains
a00 = 0.218 ± 0.013, a20 = −0.0449 ± 0.0033 assuming the
value of the scalar radius 〈r2〉s = 0.61 ± 0.04fm2. Our
simultaneous fit to the Ke4 [1,2] and to the high-energy
π+π+-production data [6,7] suggests a discrepancy at the
1-σ level with the two-loop χPT prediction for 2a00 − 5a20
[10]. We point out that the treatment of symmetry break-
ing O(p6) corrections in the scalar channel might be at
the origin of this discrepancy (Sect. 7).

2 Theoretical motivation

Before we proceed further it may be useful to summarize
briefly the main theoretical motivations which drive our
interest in accurate low-energy ππ scattering experiments,
eventually completed by independent experimental infor-
mation of a different kind. In particular it is worth ex-
plaining why a small difference in the values of scattering
lengths like the one mentioned in the introduction may
be relevant. The reader who is mostly interested in the
analysis and less in the interpretation of the new data
can skip this section and proceed directly to the following
one. Nothing in our analysis depends on theoretical ideas
summarized here.

During the last two years our understanding of the pat-
tern of chiral symmetry breaking in QCD has considerably
evolved [11–16], in particular concerning the dynamical
role of the number of light flavours. ππ scattering provides
important information about the SU(2) × SU(2) chiral
structure of QCD vacuum in the limit of massless u and
d quarks. The theoretical interpretation of this informa-
tion, however, remains incomplete unless one learns how
to disentangle the influence of the strange quark. If the
strange quark were massless, we deal with SU(3)×SU(3)
symmetry, which is the theoretician’s paradise [17]. The
reason is that all remaining quarks (c, b, t) are heavy com-
pared to the QCD scale, and consequently their influence
on the chiral structure of the vacuum remains tiny. For the
same reason, we would reach another (a priori different)
paradise if the strange quark mass were sent to infinity.
In these two limiting cases, the question of the pattern of
chiral symmetry breaking reduces to the question of con-
densation of massless q̄q pairs in the vacuum; ππ scatter-
ing would by itself suffice to detect and fully control this
one-fermion loop effect. Unfortunately, the deplorable fact

that we live in neither of these paradises [17] complicates
the problem a bit. In the real world the strange quark is
considerably heavier than u and d quarks and yet it is
light compared to the QCD scale. Consequently, the vac-
uum gets polluted by massive virtual s̄s pairs. One may
wonder how this fact could affect the SU(2)× SU(2) chi-
ral structure of the vacuum, which is merely a matter of
massless u and d quarks. Indeed, there would be no such
effect in the large-Nc limit, in which the transition:

s̄s←→ ūu+ d̄d (1)

is forbidden and, consequently, strange and non-strange
virtual pairs remain uncorrelated. Today we know that
in the real world, the OZI-rule violating transition (1) is
in fact rather important precisely in the vacuum channel
[14] and that the resulting symmetry breaking correlation
〈s̄s(ūu+ d̄d)〉 affects the SU(2)×SU(2) chiral structure of
the vacuum. We call this phenomenon which proceeds via
at least two fermion loops the induced quark condensate
[16]. It is proportional to ms, it enhances the effect of the
genuine condensate of massless quarks characteristic of the
ideal world with SU(3) × SU(3) symmetry, and it would
persist even if the latter would be absent. The situation
can be summarized by the formula:

Σ(2) = Σ(3) +msZscalar , (2)

where Σ(Nf ) denotes the v.e.v. −〈ūu〉 of the lightest
quark in the limit in which the first Nf quarks become
massless, whereas the second term represents the induced
condensate with Zscalar > 0 proportional to the amplitude
of the transition (1) in the scalar channel. Since Σ(3) is de-
fined in the limit mu = md = ms = 0 and since there are
no more massive quarks left which would be sufficiently
light to pollute the vacuum, Σ(3) = F 2

0B0 (in the current
χPT notation) represents the true condensate of massless
quarks of the SU(3) × SU(3) symmetric world. On the
other hand, Σ(2), defined at mu = md = 0 and the phys-
ical value of ms, is detected in low energy ππ scattering.
Our original quest for the importance of quark conden-
sation [18,19] did not sufficiently emphasize the subtlety
of the theoretical and experimental distinction between
Σ(2) and Σ(3). Phenomenological indications in favour of
a substantial OZI-rule violating transition, (1), were not
yet available and the large-Nc wisdom Σ(2) ∼ Σ(3) dom-
inated our thinking. Today, we have to answer the more
precise question whether the suppression of the quark con-
densate – expected in QCD due to the screening effect of
multiflavour massless quark loops – is already visible for
Nf = 3.

The important consequence of the new E865 data [1] is
that Σ(2) is sufficiently large to keep the two-flavour GOR
ratio X(2) = (mu +md)Σ(2)/F 2

πM
2
π close to one [20] (see

Sect. 6 for more details). However, we still do not know
whether the observed size of Σ(2) reflects an important
contribution of the genuine condensate Σ(3) or whether
it is (at least partially) due to the induced condensate
and to the strange quark mass, i.e. to the second term in
(2). In the latter case, the genuine condensate Σ(3) could
be rather small and the corresponding three-flavour GOR
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ratio X(3) = (mu + md)Σ(3)/F 2
πM

2
π significantly below

one. [Since X(2) ∼ 1, the suppression of X(3) would imply
an important contribution of ms to M2

π through terms
mms,mm

2
s . . ., where m = (mu +md)/2.] Moussallam [12]

has proposed a rapidly convergent sum rule that allows an
estimate of the transition (1) and of the size of the induced
condensate. Detailed studies of this sum rule [12,13,15]
are compatible with a suppression of the condensate by a
factor∼ 2 when going from 2 to 3 flavours:X(3) ∼ X(2)/2
indicating that the two contributions to Σ(2) on the right-
hand side of (2) should be of comparable size. It is rather
difficult to make a precise quantitative statement here:
the evaluation of the Moussallam’s sum rule involves a
few steps that include some unproved properties of the
scalar form-factors and a certain model-dependence (of a
similar type to the one in the phenomenological evaluation
of the scalar radius of the pion [21]). Hence, it is crucial
to find an independent way of disentangling the genuine
and induced condensate contributions to Σ(2).

An analysis of ππ scattering exclusively based on SU(2)
×SU(2) χPT can never separate the two components of
Σ(2) in (2), for the simple reason that it does not in-
volve any information on the actual size of ms. On the
other hand, an SU(3)×SU(3) analysis of suitable ππ ob-
servables supplemented by additional observables, such as
MK or FK , directly sensitive to ms, can considerably re-
strict the possible values of three important parameters: i)
the three-flavour GOR ratio X(3) = 2mΣ(3)/F 2

πM
2
π , ii)

the quark mass ratio r = ms/m and iii) the pseudoscalar
decay constant F0 = Fπ|mu=md=ms=0. An example of a
relation of this type is the strong correlation which exists
between r and X(2) [11,15]. Further restrictions can be
obtained from the emerging analysis of K − π scattering
[22].

We are going to present this combined analysis in a
separate paper [23]. It will be shown in particular that in
order to be conclusive, one has to use extremely precise
values of subthreshold ππ parameters α and β as the in-
put of our analysis. Typically, the actual precision driven
by the new E865 data analyzed in the following section
will be just sufficient to reach conclusions about the sup-
pression of the genuine condensate X(3) on the 1-σ level.
Notice that a more precise measurement of low-energy ππ
scattering is conceivable in more dedicated experiments
which are either ongoing [24] or planned [25].

3 The two S-wave scattering lengths

3.1 Extended solutions of Roy equations

The E865 data can be analyzed using a parametric rep-
resentation of the solution of Roy equations for the ππ
phase shifts. A set of dispersion relations derived by Roy
[4] allows one to relate the phase shifts δ00 , δ11 and δ20 in
the region 4M2

π ≤ s ≤ s0 (with
√
s0 ∼ 0.8 GeV) to data

at intermediate energies (
√
s0 ≤

√
s ≤ 2 GeV) and to two

subtraction constants. The latter can be identified with
the two S-wave scattering lengths a00 and a20.

The Roy equations, analyzed thoroughly in [5], yield a
boundary value problem. The solutions must interpolate
between the phase shifts at the threshold, fixed by a00 and
a20, and the three phases at the matching point s0:

θ0 = δ00(s0), θ1 = δ11(s0), θ2 = δ20(s0), (3)

determined from data above s0. As stated in [5], the be-
haviour of the phases above s0 is less important than the
boundary values, because they only affect the slope and
the curvature of the solutions. With the experimental in-
put encountered in practice, the system of Roy equations
admits a unique solution provided that the matching point
s0 is carefully chosen (0.78 GeV ≤ √s0 ≤ 0.86 GeV).

Moreover, for given boundary conditions (a00, θ0, θ1, θ2),
arbitrary values of a20 generate a strong cusp in the P-
wave solution at the matching point s0. If we require the
phases to be smooth, a20 is determined as a function of
(a00, θ0, θ1, θ2). Since θ0,1,2 can only vary in their experi-
mental range, this requirement leads to a correlation be-
tween a00 and a20, defining the so-called Universal Band
(UB) in the (a00, a

2
0) plane. Different choices for θ0,1,2 rep-

resent lines in the UB, a20 = F (a00). Inverting the rela-
tion between a20 and (a00, θ0, θ1, θ2), we can consider θ2
as a function of the other parameters. This means the
solutions of the Roy equations do depend eventually on
(a00, a

2
0, θ0, θ1) only.

The data in the I = 0, 1 channels lead to:

θ0 = 82.3◦ ± 3.4◦, θ1 = 108.9◦ ± 2◦. (4)

The authors of [5] have provided explicit numerical solu-
tions of the Roy equations for θ0 = 82.0◦ and θ1 = 108.9◦.
We have included in the parametrization of Roy equations’
solutions1, an explicit dependence on θ0 and θ1, generating
solutions (with the same driving terms and experimental
input above the matching point s0) for nine different sets
(θ0, θ1) and a few tens of (a00, a

2
0) inside the UB.

Following [5], we parametrize our solutions, for ener-
gies below 800 MeV, as:

tan δI
� (s) =

√
1− 4M2

π

s
q2�
{
AI

� +BI
� q

2 + CI
� q

4 +DI
� q

6}
×
(

4M2
π − sI

�

s− sI
�

)
. (5)

The dependence on a00 and a20 of the Schenk parameters
X = A,B,C,D in (5) is well approximated by:

XI
� = z1 + z2u+ z3v + z4u

2 + z5v
2 + z6uv

+z7u3 + z8u
2v + z9uv

2 + z10v
3 , (6)

where:

u =
a00
p0
−1 , v =

a20
p2
−1 , p0 = 0.225 , p2 = −0.03706 ,

(7)

1 We have used the standard routines of MINUIT for all the
minimization and fitting procedures of this paper
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while, for each coefficient zi, the dependence on the phase
shifts at the matching point is parametrized by:

zj = aj + δθ0 bj + δθ1 cj , (8)

where

δθ0 = θ0 − 82.3◦ , δθ1 = θ1 − 108.9◦ . (9)

The parameters s00, s11 and s20 are fixed by the boundary
conditions:

δ00(s0) ≡ θ0 , δ11(s0) ≡ θ1 , δ20(s0) ≡ θ2 , (10)

where θ2(a00, a
2
0, θ0, θ1) is parametrized following (6) and

(8). The coefficients aj , bj , cj are collected in Appendix
B. This parametrization describes our solutions to better
than 0.3◦ for the I = 0, 2, and 0.5◦ for the I = 1 partial
waves in the Universal band.

By setting θ0 = 82.0◦ and θ1 = 108.9◦, we can com-
pare with [5]. We obtain slightly different Schenk param-
eters for the so-called reference point a00 = 0.225 and
a20 = −0.0371, but the phase shifts are identical up to
a few tenths of a degree. We obtain the same Universal
Band, and only its lower half meets the consistency con-
dition (Roy equations fulfilled in their range of validity
2Mπ ≤

√
s ≤ √s1 = 1.15 GeV). In the range of interest

for a00, the gap between the parametrization of [5] and our
Roy solutions is at most 0.3◦ in the I = 0, 2 channels and
0.7◦ in the I = 1 channel (for

√
s ∼ 0.7 GeV and much

smaller near threshold in all the channels).

3.2 Model-independent determination of a0
0 and a2

0

The E865 data on δ00 − δ11 were analyzed in [1] in order
to extract a00. While two different (although compatible)
results were quoted in this reference for a00, (a00 = 0.228±
0.012±0.004+0.006

−0.012 and a00 = 0.216±0.013±0.004±0.005),
no results were given for a20, which is harder to pin down
from Ke4 data alone (see Sect. 1). An unconstrained fit
of E865 data, using the Roy equations of [5], leads to a
rather inaccurate result for the I = 2 scattering length:
a00 = 0.237 ± 0.033 and a20 = −0.0305 ± 0.0226 (χ2 =
5.44/5 d.o.f and the correlation coefficient is 0.96).

In order to extract both scattering lengths additional
information has to be provided. The first constraint arises
from the necessary consistency of the Roy solutions with
the I = 2 data above the matching point. This forces the
S-wave scattering lengths to lie within the so-called Uni-
versal Band. Unfortunately, this model-independent con-
straint is rather weak.

We make use of additional information by fitting a
broader set of data below 800 MeV, namely Rosselet and
E865 sets for I = 0, 1 [2,1] and Hoogland (sol. A) and
Losty sets for I = 2 [6,7]. Notice that a similar fit has
been considered in [5,26] but without the E865 data (cf.
Figs. 11 and 12 in [5]).

We first perform a fit using the solutions of the Roy
equations of [5]. The χ2 is defined as:

χ2
global(a

0
0, a

2
0) =

9∑
j=1

(
(δ20)ACGL(sexpj )− (δ20)expj

σexp
j

)2

+
11∑

i=1

(
[δ00 − δ11 ]ACGL(sexpi )− [δ00 − δ11 ]expi )

σexp
i

)2

, (11)

where [δI
� ]ACGL(a00, a

2
0, s) is the parametrization of Roy so-

lutions proposed in [5]. i and j are the indices of the ex-
perimental points for I = (0, 1) and I = 2 respectively.
This fitting procedure, referred to as “global”, yields:

Global : a00 = 0.228± 0.012, a20 = −0.0382± 0.0038.
(12)

with χ2
min = 16.45/18 d.o.f and a correlation coefficient

of 0.788. Including data on the P-wave below 800 MeV
reported by Protopopescu et al. [27] does not change the
result of the fit, yielding2 χ2

min = 23.1/28 d.o.f. and a00 =
0.228± 0.012, a20 = −0.0392± 0.0038.

A second fitting procedure can be followed, in which
we use our solutions of the Roy equations to include the
dependence on the phase shifts at the matching point
(θ0, θ1). The χ2 is then defined as:

χ2
extended(a00, a

2
0, θ0, θ1) =

9∑
j=1

(
(δ20)ext(sexpj )− (δ20)expj

σexp
j

)2

+
11∑

i=1

(
[δ00 − δ11 ]ext(sexpi )− [δ00 − δ11 ]expi )

σexp
i

)2

+
(
θ0 − 82.3◦

3.4◦

)2

+
(
θ1 − 108.9◦

2◦

)2

, (13)

where [δI
� ]ext(a00, a

2
0, θ0, θ1, s) is our extended parametriza-

tion of Roy solutions. This fit, called “extended”, leads to
the same S-wave scattering lengths as the “global” fit:

Extended : a00 = 0.228± 0.013, a20 = −0.0380± 0.0044,
θ0 = 82.1◦ ± 3.3◦, θ1 = 108.9◦ ± 2.0◦

(14)
with χ2

min = 16.48/18 d.o.f and the correlation matrix:

a00 a20 θ0 θ1
a00 1.000 0.799 −0.319 −0.004
a20 − 1.000 −0.271 0.029
θ0 − − 1.000 0.000
θ1 − − − 1.000

(15)

The results of these analyses are shown in Fig. 1, where
we have indicated the 1- and 2-σ contours for both de-
terminations. These contours are defined respectively as3
χ2 = χ2

min + 1 and χ2 = χ2
min + 4. We see that our fitting

result lies slightly below the center of the UB, where the
consistency condition for Roy equations is met.

2 Specifically we have used the energy-independent solution,
which has larger error bars. The P-wave production data at low
energy have been often criticized, most recently in [5]. There-
fore we prefer not to include them in the analysis, but instead
use our results to predict the P-wave at low energy

3 We recall that in the case of the simultaneous determina-
tion of two variables, this definition of the contours correspond
to 39% and 86% confidence level
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Fig. 1. Fit results using either
the Roy solutions of [5] (red, dot-
ted ellipse – “global”) or our pa-
rameterization of the Roy solutions
(black, solid ellipse – “extended”).
In each case, the thicker lines indi-
cate the 1-σ ellipse, and the thin-
ner ones the 2-σ contour. The Uni-
versal Band (delimited by the two
straight lines) is drawn according
to [5], and the narrow strip (shaded
region, cyan) related to the scalar
radius of the pion is taken from
[10]. We have indicated the result
of the fit “scalar” (blue, hatched el-
lipse) and the SχPT prediction of
[29] (red, filled small ellipse)

A comment is in order here concerning our use of the
ACM(A) I = 2 phase shifts by Hoogland et al. These were
extracted following the method A, which is a conventional
Chew-Low extrapolation to the pion pole of the measured
t-channel (m = 0) helicity moments [6] (the beam mo-
mentum was 14 GeV/c). A similar method was used by
Losty et al. [7]. A second method (B) is presented in [6],
which is based on an overall fit of an (absorption) model
for the amplitude to all non-negligible s-channel helicity
moments (m = 0 and m = 1). The method B involves
extra assumptions and parameters, some of which exhibit
unexpectedly rapid energy variations. No χ2 is given in
[6] (in a preliminary analysis [28], based on a third of the
data, a poor χ2 was reported for method B).

We have tried to use in our fit solution B of [6] instead
of solution A. Due to the small error bars of the former,
we did not succeed in obtaining a consistent description
of both ACM(B) and E865-Ke4 data within the ACGL
solutions of Roy equations [5]. The minimum has χ2 =
68/18 d.o.f. and is situated far outside the Universal Band.
Such a fit has little meaning, since the ACGL solutions
are valid exclusively inside the Universal Band. Solution
ACM(A) is free from such difficulties.

It has been suggested in [5] that the difference be-
tween the phase shifts ACM(A) and (B) indicates size-
able systematic errors, and that the errors associated with
ACM(A) solution should consequently be enlarged. It is
not obvious to us that method B yields a correct estimate
of the systematic errors inherent to method A – especially
since the two methods do not use the same sample of data.
We find it nevertheless useful to show in Appendix A and
in Fig. 6 how our results would be modified if the errors
in ACM(A) phase shifts were increased according to the
prescription advocated in [5]. Let us mention here that
these modifications barely affect the main conclusion.

3.3 Comparison with the χPT prediction for 2a0
0 − 5a2

0

In the theoretical prediction of a00 and a20 based on stan-
dard χPT including O(p6) accuracy [9,10,20,29], one may
distinguish two steps. The first step concerns the relation
between the combination 2a00−5a20 and the scalar radius of
the pion 〈r2〉s [10,29]. This step is practically independent
of the badly known O(p4) constant �̄3 but it requires an in-
dependent phenomenological determination of 〈r2〉s and it
is rather sensitive to the two-loop corrections (a more de-
tailed discussion of this theoretical prediction can be found
in Sect. 7). If one takes the value 〈r2〉s = 0.61± 0.04 fm2,
the prediction amounts to a narrow strip in the a00 − a20
plane, given in [10] and reproduced in Fig. 1:

a20 = G(a00)± .0008, (16)

where the function G(a00) may be parametrized as

G(a00) = −.0444 + .236(a00 − .22)− .61(a00 − .22)2

−9.9(a00 − .22)3 , (17)

and the error bar is estimated within the theoretical
framework defined in [10,29] (see Sect. 7 of the present
paper). The second step of the prediction procedure then
consists in locating the actual position inside the narrow
strip (16) and it involves, among other things, an estimate
of the constant �̄3.

The analysis performed in the previous subsection ma-
kes use only of the E865 and Rosselet data on δ00 − δ11 , the
Hoogland and Losty data on δ20 together with the solution
of Roy equations, and does not use χPT or a particular
value of 〈r2〉s. It provides thus a sensitive experimental
test of the theoretical prediction represented by the CGL
correlation (16) and (17). It is seen from Fig. 1 that the 1-
σ ellipses resulting from both fits “global” and “extended”
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are situated outside the CGL narrow strip despite the fact
that they are entirely contained within the Universal Band
required by the consistency of Roy equations solution.
On the other hand, the 2-σ contours intersect the nar-
row strip. We thus conclude that there is a marginal (1-σ
deviation) discrepancy between the theoretical prediction
(17) and the result of the “global” and “extended” fits.
This discrepancy will be further commented on in Sect. 7.

In order to make the comparison more quantitative,
we can perform a fit to the E865 data alone, imposing
by hand the correlation described by the narrow strip.
A similar fit has been performed in [10], leading to the
central value a00 = 0.218 (no uncertainty was indicated in
that reference). Our fitting procedure is defined by:

χ2
scalar(a

0
0, a

2
0) =

(
a20 −G(a00)
.0008

)2

+
6∑

k=1

(
[δ00 − δ11 ]ACGL(sexpk )− [δ00 − δ11 ]expk

σexp
k

)2

, (18)

where k runs only through the E865 points. We have ob-
tained:

Scalar : a00 = 0.218± 0.013, a20 = −0.0449± 0.0033.
(19)

with χ2
min = 5.89/5 d.o.f., compatible with the results of

E865 [1] for a00, and a correlation coefficient of 0.972. The
corresponding 1-σ contour is indicated in Fig. 1. We refer
to this fit and to the corresponding 1-σ ellipse as “scalar”
to be compared with the “global” and “extended” fits.
The meaning of χ2 and of the standard deviation in the
“scalar” fit should be taken with caution: The error bar
0.0008 arises from uncertainties in the experimental in-
put, while the theoretical errors inherent in the estimate
of O(p6) corrections are more difficult to quantify. On
the other hand, the fits “global” and “extended” are fully
based on experimental data and corresponding errors.

Finally, we would like to briefly comment on the Ols-
son sum rule for 2a00 − 5a20, as discussed in [5]. This sum
rule converges slowly and demands good control over the
asymptotic contribution, which is hard to obtain outside
specific models. According to the model used for this pur-
pose in [5], the asymptotic contribution to 2a00 − 5a20 is
Oas = 0.102 ± 0.017. Even with such small error bar, the
final result shown in (11.2) of [5] is consistent with our
global fit, which leads to (2a00−5a20)global = 0.647±0.015.
If the actual error bar in Oas is bigger, the impact of the
Olsson sum rule on our fit becomes completely negligible.

4 Subthreshold parameters

In the low-energy domain the ππ amplitude is strongly
constrained by chiral symmetry, crossing and unitarity. As
was first shown in [18], the amplitude depends on only six
parameters up to and including terms of order (p/ΛH)6
in the low-energy expansion. In [8], the amplitude was
written as:

AKMSF(s|t, u) = Acut(s|t, u) +Apol(s|t, u) (20)

Apol(s|t, u) =
β

F 2
π

(
s− 4M2

π

3

)
+

α

F 2
π

M2
π

3

+
λ1

F 4
π

(s− 2M2
π)2 +

λ2

F 4
π

[
(t− 2M2

π)2 + (u− 2M2
π)2
]

+
λ3

F 6
π

(s− 2M2
π)3 +

λ4

F 6
π

[
(t− 2M2

π)3 + (u− 2M2
π)3
]
,

(21)

where Acut is a known function of the Mandelstam vari-
ables s, t, u that collects the unitarity cuts of the ampli-
tude and explicitly depends on α, β, λ1, λ2.

This amplitude was constructed as the general solu-
tion of unitarity, analyticity and crossing symmetry up to
and including O(p6). The six parameters α, β, λ1, . . . , λ4
correspond to an expansion of the amplitude in the cen-
tral region of the Mandelstam triangle, and are therefore
called “subthreshold parameters”. A complete calculation
in the framework of Standard χPT [9] confirmed this re-
sult, allowing in addition to relate the six parameters to
the quark masses and LEC’s of the standard chiral La-
grangian. This last step is crucial to translate the exper-
imental information into knowledge of the LEC’s, which
parametrize the chiral structure of the vacuum of QCD.
The six parameters introduced in [9], b̄1, . . . , b̄6, are dimen-
sionless combinations of LEC’s in one-to-one (linear) cor-
respondence with α, β, λ1, . . . , λ4 of [8], or with c1, . . . , c6,
subsequently introduced in [20]. Different choices for the
set of six subthreshold parameters correspond to different
parametrizations of solutions of unitarity, analyticity and
crossing symmetry constraints, which are equivalent up to
O(p6) and only differ at O(p8).

On the other hand, the Roy equations allow one to
determine the low-energy amplitude in terms of only two
subtraction constants, identified with the two scalar scat-
tering lengths. It is therefore possible to match the two
amplitudes in their common domain of validity, in or-
der to determine, through the experimental determina-
tion of the scattering lengths, the six subthreshold pa-
rameters. Such a program was already advocated in [30],
leading to rapidly convergent sum rules for the parame-
ters λ1, . . . , λ4. A similar matching procedure, using new
solutions of the Roy equations, has been carried out in
[29] (subtracting the dispersion integrals at s = 0). Let us
briefly outline the various steps, using the notation and
results of this last reference.

Starting with particular values of a00 and a20, we can
use the solutions of the Roy equations to compute the
low-energy moments JI

n. In conjunction with the back-
ground moments II

n and H, estimated in [5], we compute
the phenomenological moments ĪI

n and their linear combi-
nations denoted p̄i=1...6 and defined in (3.5) of [29]. Match-
ing the phenomenological and the chiral representations of
the amplitude connects the phenomenological parameters
p̄i=1...6 and the chiral ones ci=1...6 [see (4.2) of the same
reference]. Appendix A and B of [29] can then be used to
translate the chiral parameters ci=1...6 into the parameters
b̄i=1...6 defined in [9], and finally into α, β and λi=1...4.
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Table 1. Subthreshold parameters for the three different fits
considered in this paper. See the text for a discussion of the
error bars

Global Extended Scalar

b̄1 -2.08 ± 6.12 -1.51 ± 7.01 -13.06 ± 5.31
b̄2 9.35 ± 1.43 8.93 ± 1.62 11.51 ± 0.62
b̄3 -0.38 ± 0.03 -0.36 ± 0.07 -0.33 ± 0.01
b̄4 0.716 ± 0.008 0.710 ± 0.010 0.727 ± 0.005
b̄5 3.21 ± 0.25 3.21 ± 0.44 3.53 ± 0.15
b̄6 2.23 ± 0.07 2.20 ± 0.08 2.34 ± 0.03

α 1.381 ± 0.242 1.384 ± 0.267 1.034 ± 0.248
β 1.081 ± 0.023 1.077 ± 0.025 1.116 ± 0.010
ραβ -0.14 -0.23 0.53
λ1 · 103 -4.40 ± 0.28 -4.18 ± 0.63 -3.97 ± 0.12
λ2 · 103 9.04 ± 0.10 8.96 ± 0.12 9.17 ± 0.06
λ3 · 104 2.21 ± 0.10 2.22 ± 0.16 2.32 ± 0.06
λ4 · 104 -1.40 ± 0.04 -1.38 ± 0.04 -1.46 ± 0.02

We can repeat this procedure for each set of (a00, a
2
0), as

determined from the “global” and “scalar” fits, or (a00, a
2
0,

θ0, θ1), as determined from the “extended” fit, described
in the previous section. In order to take full account of
the theoretical and experimental correlations among the
six parameters, we proceed in the following way: we gen-
erate random sets of (a00, a

2
0) or (a00, a

2
0, θ0, θ1), distributed

according to the 2- or 4-dimensional gaussian obtained
from the covariance matrix of the fit. We then fit the re-
sulting distributions for the subthreshold parameters by
gaussians, leading4 to Table 1. ραβ denotes the correla-
tion coefficient between α and β.

The slightly larger error bars of the “extended” fit,
compared to the ones of the “global” fit, reflect the in-
fluence of the uncertainties in θ0 and θ1, which in the
“global” fit are not explicitly taken into account. The dif-
ferences in the central values between these two fits (al-
though compatible within the errors) may be ascribed to
the fact that the “extended” parametrization is not as ac-
curate as the ACGL one, due to the fact that the former
has to account for the dependence on two more variables.
The column referring to the “scalar” fit should be un-
derstood as originating from a mixture of E865 data and
χPT-based theoretical predictions that rely on assump-
tions about the size of O(p6) counterterms (see Sect. 7).
For this reason the associated errors should not be inter-
preted in the strict statistical sense. The corresponding 1-
and 2-σ ellipses in the (α− β) plane are drawn in Fig. 2.

4 The phenomenological moments JI
n are integrals of the

I = 0, 1, 2 phase shifts from threshold to
√

s2 = 2 GeV. The
solutions of the Roy equations are used for s ≤ s0, and experi-
mental input is used above the KK̄ threshold. An interpolation
is necessary in the intermediate region [s0, 4M2

K ]. We have ob-
served a weak sensitivity of λ1 and λ2 on the interpolation
prescription. On the other hand, the values of α and β are
independent of this procedure
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Fig. 2. Correlation between α and β from the fit “scalar”
(blue, dashed ellipse) and our fits (black, solid for the “ex-
tended” and red, dotted for the “global”). The thicker lines
correspond to the 1-σ ellipses, whereas the thinner ones indi-
cate the 2-σ ellipses (not shown for the “scalar” fit)

It is worth stressing that a rather small difference be-
tween a00 and a20 resulting from the scalar fit, on the one
hand, and from the global and extended fits on the other
hand, results in a more pronounced difference in the cor-
responding values of the subthreshold parameters α, β.
Whereas the scalar fit (and the CGL prediction) is char-
acterized by values of α close to (or smaller than) 1 and
β well above 1.10, the global and extended fits lead to
central values of α ∼ 1.4 and relatively smaller values of
β. It will be shown elsewhere [23] that this qualitative
difference finds its interpretation within the three-flavour
analysis of ππ scattering together with other observables.

5 Nf = 2 Mass
and decay constant Identities

In order to investigate the consequences of the results
obtained so far for the parameters of the effective La-
grangian, we start with the Ward identity satisfied by the
two-point function of the divergence of the axial current
ūγµγ5d and of its conjugate at zero momentum transfer.
We isolate all LO (linear) and all NLO (quadratic) contri-
butions in the quark mass m = (mu +md)/2, and collect
all O(m3) and higher order terms into the NNLO remain-
der δ:

F 2
πM

2
π = F 2M2 +

M4

32π2 (4�̄4 − �̄3) + F 2
πM

2
πδ. (22)

Here
M2 = 2mB, B = Σ(2)/F 2 (23)

are defined in the SU(2)×SU(2) chiral limit, keeping the
strange quark mass at its physical value:

F = lim
mu,md→0

Fπ|ms=physical , (24)

Σ(2) = − lim
mu,md→0

〈ūu〉|ms=physical . (25)
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A similar identity holds for the two-point function of axial
minus vector currents, giving

F 2
π = F 2 +

M2

8π2 �̄4 + F 2
πε. (26)

On the right hand side, all LO and NLO contributions are
again explicitly shown, and all higher orders - O(m2) and
higher - are included in the NNLO remainder ε. �̄3 and �̄4
are the standard SU(2) × SU(2) LEC’s, which are scale-
independent and exhibit logarithmic singularity in the chi-
ral limit. They can be defined non-perturbatively, via the
low-energy behaviour of the two-point functions that en-
ter the Ward identities considered above. It may be useful
to consider the NNLO remainders δ and ε in (22) and (26)
as known, and to treat the mass and decay constant iden-
tities exactly, not performing any expansion. This avoids
the use of perturbation theory when eliminating the order
parameters M2 and F 2 in favour of observable quantities.
We will see later that, despite the fact that α−1 need not
be particularly small, this non-perturbative precaution is
not absolutely necessary in the Nf = 2 case. It will how-
ever, be fully justified in the case of three light flavours.
In any case, the above method – which does not coincide
either with the Standard or with the Generalized χPT –
is completely meaningful no matter how large �̄3 or how
small the condensate might be.

The fundamental order parameters, in appropriate
units, the condensate and the decay constant defined as:

X(2) =
2mΣ(2)
F 2

πM
2
π

, Y (2) =
2mB
M2

π

,

Z(2) =
F 2

F 2
π

=
X(2)
Y (2)

, (27)

are related to the observables Mπ, Fπ, to the LEC’s �̄3
and �̄4 and to the NNLO remainders δ, ε by the following
identities:

Y (2) =
2(1− δ)

1− ε+ [(1− ε)2 − 2�̄3ξ(1− δ)](1/2)
, (28)

X(2) = 1− δ − (4�̄4 − �̄3)ξY (2)2/2 , (29)
Z(2) = 1− ε− 2�̄4ξY (2) . (30)

In the last three equations, we have denoted

ξ =
1

16π2

M2
π

F 2
π

. (31)

The ππ subthreshold parameters α and β can be expressed
similarly. Reading the LO and NLO perturbative contri-
butions to F 2

πM
2
πα and to F 2

πβ from [31], one obtains the
identities:

α = 1− (1 + 3�̄3 − 4�̄4)ξY (2)2/2 + δα , (32)
β = 1 + 2(�̄4 − 1)ξY (2) + εβ . (33)

It may be expected – at least for the moment – that the
NNLO direct remainders δα and εβ are not more impor-
tant than the uncertainties in the determination of the
parameters α and β from experimental data.
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Fig. 3. 1-σ ellipse in the �̄3 − �̄4 plane, from the fit “scalar”
(blue, dashed ellipse) and our fits (black, solid for the “ex-
tended” and red, dotted for the “global”), using the linearized
formulae

6 Determination of LEC’s
and order parameters

If we expand the previous expressions of α and β in powers
of ξ, we obtain the following (linearized) expressions in
term of the LEC’s �̄3 and �̄4:

α− β = 3ξ(1− �̄3)/2 , (34)
β − 1 = 2ξ(�̄4 − 1) . (35)

This is an excellent approximation, unless �̄3 or �̄4 become
“too” large. However, even if one of them were large, the
non-linear equations (32) and (33) of the previous section
would still be exact identities; moreover, the definition of
�̄3 and �̄4 in terms of two-point functions is independent
of their magnitudes. We can use (34) and (35) to trans-
late our determination of (α, β) into a 1-σ contour plot in
the �̄3 − �̄4 plane. In Fig. 3, we show three ellipses corre-
sponding to those in the α − β plane displayed in Fig. 2
above.

If we use the formulae (28), (32) and (33), but now
without linearizing, the previous ellipses are deformed, as
shown in Fig. 4 (solid lines). The corresponding contours
in the X(2)−Z(2) plane are plotted in Fig. 5. Up to now,
we have neglected the indirect remainders δ and ε as well
as direct remainders δα and εβ . In the case Nf = 2, we
expect these NNLO quantities to be less than 1%, since
(22) and (26) are obtained by an expansion in powers of
the nonstrange quark mass. This leads to a (small) addi-
tional broadening of the 1-σ regions, as seen in the plots
with thinner lines in Figs. 4 and 5 (δα and εβ are negligible
compared to the present uncertainty in the parameters α
and β).

It is clear from Fig. 4 that we obtain rather large and
negative values of �̄3, compared to the standard expecta-
tion of 2.9 ± 2.4. This can be interpreted as a consequence
of an important OZI-rule violating transition (1) leading
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Fig. 4. 1-σ ellipse in the �̄3 − �̄4 plane, from the fit “scalar”
(blue, dashed ellipse) and our fits (black, solid for the “ex-
tended” and red, dotted for the “global”), using the non-
linearized formulae. The thinner lines indicate the domains
allowed if ε, δ ≤ 1%

to a larger value of the Nf = 3, large-Nc suppressed con-
stant Lr

6(Mρ), than usually assumed. Sum rule estimates
of the latter [12,15] support this interpretation. Notice
that the OZI rule is an important ingredient of the stan-
dard estimates of �̄3 [3]. We will return to this question
elsewhere [23].

In Fig. 5, we see that the two-flavour GOR ratio X(2)
is constrained (at one sigma): X(2) = 0.81± 0.09. In [32],
this ratio has been theoretically analyzed, including the
O(p6) double chiral logarithms of Generalized χPT, de-
termining X(2) as a function of α+ 2β and other LEC’s.
A combination of the results of the latter analysis with the
present (correlated) values for α and β leads to a range
of values for X(2) completely consistent with ours. Fur-
ther examination of Fig. 5 shows that F/Fπ is also limited
to a rather narrow band, (F/Fπ)2 = 0.90 ± 0.03. Let us
mention that the difference seen in the (α, β) plane be-
tween the various fits reappears clearly here. The scalar
fit (and the CGL prediction) favours larger values of X(2)
and lower values of Z(2) than the global/extended fit.

7 Comments on the correlation
between scattering lengths
and the scalar radius of the pion

A relation between 2a00 − 5a20 and the scalar radius of
the pion based on two-loop χPT has been derived in [10,
29]. For the current value of the scalar radius 〈r2〉s =
0.61±0.04 fm2, this prediction results in the narrow strip
in the a00 − a20 plane shown in [10] and reproduced here in
Fig. 1. The accuracy of this prediction is not only condi-
tional on the experimental error, but also on theoretical
assumptions and “rules”, which are a priori reasonable
and natural, but not necessarily true.
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Fig. 5. 1-σ ellipse in the X(2) − Z(2) plane, from the fit
“scalar” (blue, dashed ellipse) and our fits (black, solid for
the “extended” and red, dotted for the “global”). The thinner
lines indicate the domains allowed if ε, δ ≤ 1%

First of all, these assumptions concern the estimates
of the O(p6) corrections [20,29]. Although it is gener-
ally admitted that for certain observables (e.g. scatter-
ing lengths), these corrections could be enhanced, it is
expected that for quantities receiving a weak contribu-
tion from O(p4) loops, the whole chiral expansion will
rapidly converge. An example of this rule of thumb which
is relevant for the present discussion is the quantity C1 −
M2

π〈r2〉s/3, which does not contain O(p4) logarithms at
all. (C1 stands for a combination of subthreshold param-
eters defined in [29].) We shall argue that this fact does
not prevent the corresponding O(p6) corrections from be-
ing relatively important. (An alternative “rule” is conceiv-
able [23]: expand QCD correlation functions at kinemat-
ical points sufficiently distant from all Goldstone boson
singularities. Such rule is a priori not less or more natu-
ral.) Next, it is usually assumed that O(p6) counterterms
at a suitable scale can be estimated via the narrow reso-
nance saturation [9,29,33]. In fact, already at O(p4) this
assumption fails in channels where 1/Nc – corrections are
large and/or the OZI-rule is strongly violated. This is what
likely happens in the scalar channel, which is particularly
relevant for the present discussion. Furthermore, the exist-
ing resonance estimates of O(p6) counterterms have been
so far based on a “resonance effective Lagrangian Lres” in-
volving (and missing) the same resonances with the same
“minimal resonance couplings” as in [34], originally used
to estimate the O(p4) LEC’s. It has often been argued [35,
36] that additional non-minimal couplings are necessary
to avoid conflicts with the QCD short-distance behaviour
of two- and three-point functions, especially if the latter
involve (pseudo)scalar currents. The estimates of the cor-
responding O(p6) counterterms r1, r2, r3, r4, rS can be af-
fected by these new resonance couplings. We shall return
to the resonance estimates of the rn’s shortly.

Finally a remark should be made about the dispersive
estimate of 〈r2〉s in [21], and the uncertainty related to it.
The pion scalar form-factor and radius are not experimen-
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Fig. 6. Correlation (36) between a0
0 and a2

0, obtained from
the relation between 2a0

0 − 5a2
0 and the scalar radius of the

pion. The shaded oblique band (yellow) corresponds to the
O(p4) level [(36) with δa = 0], using the dispersive estimate of
[21]: 〈r2〉s = 0.61 ± 0.04 fm2. The shaded curved strip (cyan)
represents the effect of O(p6) corrections δa according to the
prediction of [10] using the same input value of 〈r2〉s. The
contours correspond to fits using either the Roy solutions of
[5] (red, dotted ellipse – “global”) or our parameterization of
the Roy solutions (black, solid ellipse – “extended”), with the
errors of ACM(A) data enlarged as detailed in Appendix A.
In each case, the thicker lines indicate the 1-σ ellipse, and the
thinner ones the 2-σ contour. The other elements are identical
to Fig. 1

tally measurable quantities – information about them can
only come from indirect theoretical constructions. In con-
trast to the case of the (observable) vector form-factor,
QCD does not restrict very much the high momentum
behaviour of the scalar form-factor. It even does not guar-
antee that the latter satisfies an unsubtracted dispersion
relation. Consequently, the dispersive evaluation of 〈r2〉s
suffers from a certain model dependence concerning the
higher momentum contributions; this is usually not dis-
cussed in the literature. The quoted uncertainty should
not be interpreted outside the framework of the model
used in evaluating the scalar radius.

Most of these critical remarks are obviously not new.
It might however be useful to keep them in mind when dis-
cussing the origin of the discrepancy between our model-
free determination of scattering lengths from the data and
the CGL narrow strip prediction [10]. The origin of the
narrow strip (17) is more easily understood from (3) of
[10]:

2a00 − 5a20 =
3M2

π

4πF 2
π

(
1 +

1
3
M2

π〈r2〉s +
41
12
ξ

)
+ δa (36)

= 0.57158 + 0.05541
( 〈r2〉s

0.61 fm2

)
+ δa , (37)

where δa = O(m3). It is worth stressing that the O(p6)
contribution δa is essential for the numerical coherence of
(36). If the O(p6) contribution δa is dropped, (36) reduces
to the O(p4) low-energy theorem [31] relating 2a00 − 5a20

Table 2. Values of δa required for satisfying (36) and the
estimate 〈r2〉s = 0.61 ± 0.04 fm2. The correlation between a0

0
and a2

0 has been taken into account to compute the error on
2a0

0 − 5a2
0

Scalar Global

a0
0 0.218 ± 0.013 0.2279 ± 0.012

a2
0 -0.0449 ± 0.0033 -0.0382 ± 0.0038
2a0

0 − 5a2
0 0.660 ± 0.011 0.647 ± 0.015

δa 0.033 ± 0.012 0.020 ± 0.015

and 〈r2〉s. This model-independent O(p4) relation is rep-
resented in Fig. 6 as a straight oblique band corresponding
to the estimate of the scalar radius 〈r2〉s = 0.61±0.04 fm2.

In order to reproduce the prediction of [29]: 2a00−5a20 =
0.663±0.006, either the scalar radius should be as large as
1.01 fm2, or the O(p6) correction δa should move the O(p4)
straight oblique band up to the curved strip along the
bottom of the Universal Band, reproduced in Fig. 6 from
[10]. If we believe the estimate 〈r2〉s = 0.61±0.04 fm2, and
if (36) should hold inside the scalar or the global ellipse,
δa should take the values indicated in Table 2. The O(p6)
correction amounts thus to 5% in the scalar case, and 3%
in the global one.

This size of O(p6) corrections is consistent with gen-
eral expectations. On one hand, NNLO contributions to
“smooth” observables – typically, QCD correlation func-
tions far from Goldstone boson singularities – are expected
at 1% level (see the NNLO remainders δ and ε in Sect. 5).
On the other hand, we expect an enhancement of higher-
order corrections to infrared-singular “threshold quanti-
ties”, such as scattering lengths [20,29,30]. Let us empha-
size that, in order to reproduce the narrow strip of [10], the
two-loop correction δa has to be known very precisely: this
is no longer a matter of a model-independent low-energy
theorem [31] nor of an accurate knowledge of 〈r2〉s. In
particular, the CGL prediction [10] would be brought into
agreement with the present determination of a00 and a20 by
the “global” fit described in Sect. 3, if the O(p6) correction
δa were reduced by factor 2, even if the scalar radius were
not modified.

To understand the structure of the O(p6) correction
δa, we follow [29] and write:

2a00 − 5a20 =
3M2

π

4πF 2
π

C1 +M4
πα1 +O(M8

π) . (38)

α1 is a combination of phenomenological moments defined
in (6.4) of [29]. C1 collects polynomial coefficients in the
chiral representation of the scattering amplitude. Its ex-
pansion in powers of m reads [29]:

C1 = 1 +
M2

π

3
〈r2〉s +

23ξ
420

+ ξ2∆1 +O(ξ3) , (39)

where

∆1 ≡ −71L̃2

12
+ L̃

{
− 40

9
�̃1 − 80

9
�̃2 − 5

2
�̃3 + 4�̃4 +

5393
315

}
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−�̃3�̃4 + �̃24 +
1826
315

�̃1 +
3118
315

�̃2 +
79
21
�̃3 − 144

35
�̃4

−521
252

π2 +
24221
3024

+ r̃2 + 4r̃3 − 4r̃4 − 2r̃S2 , (40)

contains the O(p4) constants

�̃n = �̄n − L̃, L̃ = log
µ2

M2
π

, (41)

and the scale-dependent O(p6) counterterms

r̃n = (4π)4rn(µ) . (42)

Comparing with (36), the O(p6) correction δa is seen
to consist of two parts:

δa = δM + δ1 . (43)

δM is essentially the phenomenological moment M4
πα1

from which the leading infrared singularity has been sub-
tracted:

δM = M4
πα1 − 4π

353
35

ξ2 . (44)

With the help of (6.8) of [29], one easily checks that
in the chiral limit m → 0 all O(p4) contributions on the
right-hand side of (44) exactly cancel. In practice, how-
ever, M4

πα1 is obtained by evaluating infrared singular
sum rules using physical scattering lengths and not their
values in the chiral limit. Consequently, the quantity δM
is expected to be sensitive to the infrared enhancement
of higher order corrections to the scattering lengths. One
obtains:

M4
πα1|scalar = 0.0604± 0.0054,
δM |scalar = 0.034± 0.0054, (45)

M4
πα1|global = 0.0636± 0.005,
δM |global = 0.037± 0.005, (46)

for a00 and a20 inside the “scalar” and “global” ellipses re-
spectively. The second part of the O(p6) correction δa is
due to ∆1:

δ1 = 12πξ3∆1 . (47)

As shown in (40), the latter depends on the O(p4) con-
stants �̄1, �̄2, �̄3, �̄4 and on the counterterms r̃2, r̃3, r̃4, r̃S2

describing O(p6) symmetry breaking effects in the scalar
sector. The CGL prediction [10,29] of the strong correla-
tion (17) between scattering lengths originates from a par-
ticular matching procedure worked out in [20], and from
the resonance estimate of O(p6) counterterms [9,29,33],
whose practical outcome is the fact that δ1 is negligibly
small and the whole two-loop correction δa reduces to the
contribution δM as shown in (45). This conclusion is in-
dependent of the actual error in the dispersive estimate of
the scalar radius 〈r2〉s = 0.61± 0.04 fm2.

The smallness of δ1 can indeed be justified within the
framework defined by the assumptions summarized at the
beginning of this section. To illustrate this point, let us
concentrate first on a00 and a20 inside the ellipse resulting

from the “scalar” fit. Choosing the scale µ = 770 MeV (δ1
is scale-independent), we write

δ1 = δCT + δ�, (48)

where the counterterm part (at the scale µ) is:

δCT = 12πξ3(r̃2 + 4r̃3 − 4r̃4 − 2r̃S2) , (49)

whereas the loop part δ� is given in terms of O(p4) con-
stants �̄1, �̄2, �̄3, �̄4. We take [29]:

�̄1 = −0.4± 0.6, �̄2 = 4.3± 0.1 , (50)

and for �̄3, �̄4 we use the result of the “scalar” fit repre-
sented by the corresponding ellipse in Fig. 3. This leads to
the estimate δ� = 0.0004±0.0083. Using the resonance es-
timates of the r’s [9,33,29] which are obtained according
to the prescription mentioned above and assuming that
the typical mass scale relevant in the scalar channel is
MS = 1 GeV, one obtains δCT ∼ 0.00025. The authors of
[29] assume that this estimate (r̃1 = −1.5, r̃2 = 3.2, r̃3 =
−4.2, r̃4 = −2.5, r̃S2 = −0.7) holds within a factor of 2.
We can even relax this detailed estimate in favour of a
more crude order of magnitude:

r̃n = (4π)4rn(µ) ∼ ±
(

4πFπ

MS

)4

, (51)

which is expected to hold for O(p6) constants describing
symmetry breaking effects in the scalar channel. The cru-
cial point here is the dependence on the effective scalar
mass MS . As long as MS ∼ 1 GeV, δCT will remain small:
adding individual r̃n contributions randomly (r̃n ∼ ±1.8),
one gets in this case δCT ∼ ±0.0012. The whole two-
loop correction δa is then obtained by adding δM given
by (45) with the estimates of δ� and δCT . One obtains
δa = 0.034 ± 0.010 in agreement with the value of δa re-
quired by the scalar fit and shown in Table 2.

We now return to the result of our paper indicating a
deviation of the CGL narrow strip from experiment. Let us
assume for the moment that the value of the scalar radius
remains unchanged. Then, according to Table 2, the actual
value of the two-loop correction δa = 0.020 ± 0.015 is no
longer saturated by δM = 0.037± 0.005 and consequently
δ1 can no longer be negligible. The loop part δ� can be
estimated as before. Taking the same values (50) of �1, �2
and using for �3, �4 the results of the global fit (see the
corresponding ellipse on Fig. 3), one obtains in this case5
δ� = 0.0096 ± 0.0076. This allows the extraction of the
required value of the O(p6) counterterm combination δCT .
Parametrizing the possible variation of the scalar radius
by:

〈r2〉s = 0.61 fm2(1 + δr) , (52)

one obtains the final estimate for the combined effect of
δCT and δr (our analysis does not allow us to disentangle
these corrections):

δCT + 0.05541 · δr = −0.0266± 0.009 . (53)
5 All the above estimates of the loop part of ∆1 can be re-

produced by using its expression in terms of a0
0 and a2

0, which
arises from the matching with the Roy equations’ solutions
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This means that bothO(p6) contributions – the subtracted
infrared singular moment δM and the symmetry breaking
counterterms – are basically of the same order of magni-
tude. This is still consistent with the crude order of mag-
nitude estimate of (51), provided the effective mass scale
MS characteristic of the scalar channel contributions is
reduced by a factor 2: MS ∼ 500 MeV. This could indeed
be a rather natural (though rough and qualitative) way
how to account for the exceptional role of the ππ contin-
uum and of the OZI-rule violation in the scalar channel.
In this case, the estimate (51) leads to |δCT | ∼ 0.019, in
qualitative agreement with (53), provided δCT is negative.

8 Conclusion

Low-energy ππ scattering has long been recognized as the
golden observable to access the chiral structure of QCD
vacuum. From one side the Roy equations allow a com-
pletely model-independent experimental determination of
the two S-wave scattering lengths a00 and a20. Chiral sym-
metry can then be used to translate this information into
knowledge of the LEC’s of the chiral Lagrangian. In this
paper we have followed these two steps using recent data
on Ke4 decays published by the E865 Collaboration. Con-
trary to previous analyses, we did not rely on any theoret-
ical assumption about the correlation between a00 and a20,
but rather supplemented the Ke4 data with existing data
in the I = 2 channel below 800 MeV. The result

a00 = 0.228± 0.012, a20 = −0.0382± 0.0038 (54)

is compared with the theoretical relation between 2a00−5a20
and the scalar radius of the pion [10] obtained in the stan-
dard two-loop χPT. If the dispersive determination of the
latter, 〈r2〉s = (0.61 ± 0.04) fm2 is used, one finds a dis-
agreement at the 1-σ level. It is possible to turn the argu-
ment around, and interpret this discrepancy as a measure-
ment of O(p6) counterterms that contribute to the above
theoretical relations. The latter come out larger than ex-
pected by the usual resonance saturation assumptions;
this fact might be the manifestation of the exceptional
status of the scalar channel, characterized by a strong ππ
continuum and OZI rule violation.

The same conclusions are reached once we include in
the Roy equations solutions the dependence on the phases
at the matching point,

√
s = 800 MeV, θ0 and θ1. These

two quantities are likely to represent the most important
source of theoretical uncertainty for the Roy solutions,
aside from the one on the driving terms. Our extended
Roy solutions concretely parametrize the theoretical error
on the phaseshifts, for a given value of a00 and a20.

Comparing the full two-loop standard χPT prediction
for the two scalar scattering lengths [29], a00 = 0.220 ±
0.005 and a20 = −0.0444 ± 0.0010 with (54), one finds
agreement for a00, but a 1-σ discrepancy persists for a20.
This makes still more crucial the outcome of new precise
experiments on ππ, which are either planned [25] or on-
going [24]. In particular, more accurate Ke4 data in the

region of higher sππ could eventually allow a simultane-
ous determination of both a00 and a20 from a single set of
data on δ00 − δ11 . This might be preferable to the proce-
dure adopted in the present paper, where E865 results are
combined with the π+π+-production data of a different
origin. Our result on a00 (54) agrees with one of the two
determinations of the isoscalar scattering length by the
E865 collaboration [1] that does not use the narrow strip
correlation between a00 and a20 as a theoretical input [10].
No determination of a20 is reported in [1]. In this respect
it is interesting to notice that the observed experimental
correlation between a00 and a20 is positive and close to 1.
The pionium lifetime experiments [24] cannot distinguish
(a00, a

2
0) pairs with the same |a00 − a20|, in particular the

global and scalar fits which lead to a00−a20 = 0.266±0.010
and 0.263± 0.010 respectively.

After determining the scattering lengths, we have stud-
ied the consequences for the ππ subthreshold parameters,
by means of a matching procedure with the chiral ampli-
tude. The influence of the uncertainty in θ0 and θ1 is only
apparent in the parameters λ1 and λ2, whereas the others,
in particular α and β, are practically independent thereof.
These last two parameters are intimately related to the
two main order parameters of SU(2)× SU(2) chiral sym-
metry, the quark condensate and the pion decay constant
in the SU(2) chiral limit, keeping the strange quark mass
at its physical value. The result for the two-flavour GOR
ratio X(2) = 0.81± 0.09 corresponds to a large and nega-
tive central value for the LEC �̄3 ∼ −18, to be compared
with the standard expectation �̄3 = 2.9 ± 2.4. Since this
constant is rather sensitive to the OZI rule violating con-
stants L4 and L6 of the three-flavour chiral Lagrangian,
this conclusion seems to corroborate previous indications
concerning the size of OZI rule violation [12,15] in the
scalar channel, namely the value of L6.

Finally, we would like to stress that, although crucial
for understanding the pattern of Nf = 2 chiral symmetry
breaking, ππ scattering alone does not tell us anything
about the important question of the dependence of chi-
ral order parameters on Nf . In particular it cannot be
used to disentangle the “genuine” condensate of the purely
massless theory, from the one “induced” by massive (but
light) strange quark pairs. Nevertheless very accurate low-
energy data on ππ scattering still represent an essential in-
gredient in a combined SU(3)×SU(3) analysis and forth-
coming determination [23] of the three flavour condensate
Σ(3), the quark mass ratios and other “strange” features
of the QCD vacuum. For this program, new low-energy
ππ and πK scattering data are of obvious interest.
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Appendix
A Treatment of errors for ACM(A) data

As discussed at the end of Sect. 3, it was proposed in [5] to
take into account (unknown) systematic errors in method
A of [6], by enlarging errors of ACM(A) solution in the
following way. Consider for each energy bin the phase
shift of solution A (δA ± ∆δA) and the one of solution
B (δB ±∆δB). The difference |δA − δB | is supposed to re-
flect systematic errors of method A. The prescription ad-
vocated in [5] consists then in adding in quadrature this
difference to the error ∆δA quoted in [6]. The ACM(A)
solution with enlarged errors is thus defined as:

δA ±
√

(∆δA)2 + (δA − δB)2 (55)

The “global” and “extended” fits can be performed
with these enlarged errors for ACM(A) phase shifts. The
corresponding 1- and 2-σ contours for the S-wave scatter-
ing lengths are plotted in Fig. 6, while Table 3 summarizes
the changes occurring to the various quantities considered
in this paper. Let us mention that the nonlinear (28), (32)
and (33) have been used to compute �̄3 and �̄4, and a con-
tribution of the NNLO remainders δ, ε ≤ 1% is included
in the error bars of X(2) and F 2/F 2

π .
We see that enlarging errors for ACM(A) phase shifts

slightly moves the global/extended contours in the (a00, a
2
0)

plane towards the bottom of the Universal Band. The ef-
fect is however marginal: the 1-σ discrepancy remains be-
tween the scalar and the global/extended fits, and the
derived quantities �̄3, �̄4, X(2) and F 2/F 2

π are almost un-
changed.

B Parametrization of the Roy solutions

In [5], the solutions of Roy equations have been described
according to the Schenk parametrization (5). The Schenk
parameters XI

� (X = A,B,C,D, s) are functions of the
scattering lengths, a00 and a20, and the phase shifts at the
matching point, δ00(s0) ≡ θ0 and δ11(s0) ≡ θ1. In [5],
the Roy equations were solved for the particular choice
of phase shifts at the matching point: θ0 = 82.0◦ and
θ1 = 108.9◦, and the dependence on a00 and a20 of the pa-
rameters X = A,B,C,D, s was parametrized according
to (6).

We have followed the same procedure as in [5], with
the only difference that θ0 and θ1 are explicitly treated as
variables. After generating Roy solutions for θ0 ∈ {78.9◦,
82.3◦, 85.7◦} and θ1 ∈ {106.9◦, 108.9◦, 110.9◦}, we then
performed a fit of the form of (5), (6) and (8) with our
solutions, in order to obtain the parameters ai, bi, ci of (8).
The Schenk parameters s00, s11 and s20 are not parametrized
in the form of (6), but are fixed by the condition at the
matching point δI

� (s0) = θI .
The parameters ai are obtained by considering only

the solution (θ0 = 82.3◦, θ1 = 108.9◦). The parameters
bi have then been obtained by fitting Roy solutions with
δθ0 �= 0 and δθ1 = 0, and the parameters ci with δθ0 = 0

Table 3. Results of the global and extended fits, considering
for ACM(A) phase shifts either the errors indicated in [6], or
enlarged errors according to the prescription of [5]

Global fit
ACM(A) errors Enlarged errors

a0
0 0.228 ± 0.012 0.227 ± 0.012

a2
0 -0.0382 ± 0.0038 -0.0392 ± 0.0041

χ2 16.45 14.56

α 1.381 ± 0.242 1.334 ± 0.252
β 1.081 ± 0.023 1.088 ± 0.024
ραβ -0.14 -0.25

�̄3 -17.8 ± 15.3 -14.1 ± 15.0
�̄4 4.1 ± 0.9 4.3 ± 0.9
X(2) 0.81 ± 0.07 0.82 ± 0.07
(F/Fπ)2 0.89 ± 0.02 0.89 ± 0.03

Extended fit
ACM(A) errors Enlarged errors

a0
0 0.228 ± 0.013 0.227 ± 0.013

a2
0 -0.0380 ± 0.0044 -0.0389 ± 0.0047

χ2 16.48 14.59

α 1.384 ± 0.267 1.340 ± 0.281
β 1.077 ± 0.025 1.084 ± 0.027
ραβ -0.23 -0.30

�̄3 -18.5 ± 16.7 -15.0 ± 16.3
�̄4 4.0 ± 0.9 4.2 ± 1.0
X(2) 0.81 ± 0.08 0.82 ± 0.08
(F/Fπ)2 0.90 ± 0.03 0.89 ± 0.03

and δθ1 �= 0. At each step, the fit has been performed
at the level of the phase shifts, and not of the Schenk
parameters, in order to ensure a smooth dependence on
(a00, a

2
0, θ0, θ1). We have checked that this parametrization

was adequate, even for solutions with both non-vanishing
δθ0 and δθ1. The maximal gap between any solution and
our parametrization is at most 1% in the I = 0, 1, 2 chan-
nels.

The coefficients resulting from the fit are expressed in
units of Mπ, and the phase shifts θ0,1,2 are in radians. For
A0

0 and A2
0, all the coefficients ai, bi, ci vanish, apart from:

A0
0 : a1 = a2 = 0.225 , (56)

A2
0 : a1 = a3 = −0.03706 , (57)

Par. zi ai bi ci

1 .3617 · 10−1 −.1716 · 10−2 −.3860 · 10−2

2 .1574 · 10−1 −.2448 · 10−2 −.3384 · 10−3

3 .1057 · 10−1 −.1774 · 10−2 −.2510 · 10−4

4 −.1782 · 10−2 −.1025 · 10−1 −.4312 · 10−2

A1
1 5 .2572 · 10−3 −.4649 · 10−2 −.1705 · 10−2

6 −.2872 · 10−3 .1046 · 10−2 −.3467 · 10−2

7 .8311 · 10−2 −.9152 · 10−2 −.3637 · 10−2

8 −.2603 · 10−2 −.1489 · 10−1 .2188 · 10−2

9 .1247 · 10−2 .7639 · 10−3 −.1340 · 10−2

10 −.1186 · 10−3 .4371 · 10−2 .1128 · 10−4
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Par. zi ai bi ci

1 .2482 .4902 · 10−1 .1282 · 10−1

2 .1997 .1630 −.3179 · 10−3

3 .1285 .1137 .1640 · 10−3

4 .1831 · 10−1 −.1185 .6305 · 10−1

B0
0 5 .9970 · 10−2 −.6395 · 10−2 .1104 · 10−1

6 .4846 · 10−1 .3431 −.1661 · 10−1

7 −.3888 · 10−2 −.1598 .4322 · 10−1

8 −.8912 · 10−2 .5183 −.3067 · 10−1

9 −.4265 · 10−2 .4161 · 10−1 .8623 · 10−2

10 −.3232 · 10−2 −.1073 .2976 · 10−2

Par. zi ai bi ci

1 .1135 · 10−3 −.1685 · 10−3 −.6043 · 10−3

2 −.2094 · 10−2 −.3429 · 10−3 −.5583 · 10−4

3 −.8626 · 10−3 −.2467 · 10−3 −.2205 · 10−4

4 .2911 · 10−3 −.8897 · 10−3 −.5793 · 10−3

B1
1 5 .7343 · 10−4 −.4099 · 10−3 −.2258 · 10−3

6 .2063 · 10−3 −.4832 · 10−3 −.6376 · 10−3

7 .5294 · 10−3 −.6346 · 10−3 −.3879 · 10−3

8 −.3372 · 10−3 −.2347 · 10−2 .9292 · 10−5

9 −.1564 · 10−3 .1032 · 10−4 −.1169 · 10−4

10 −.1301 · 10−4 .8137 · 10−3 −.1051 · 10−3

Par. zi ai bi ci

1 −.8567 · 10−1 −.5496 · 10−2 .1526 · 10−2

2 −.1561 · 10−1 .1510 · 10−2 −.6254 · 10−3

3 −.8722 · 10−2 .9679 · 10−3 .2538 · 10−3

4 .9872 · 10−2 .1001 · 10−1 .2140 · 10−1

B2
0 5 .2176 · 10−1 .3724 · 10−2 .3595 · 10−2

6 .3338 · 10−1 −.1050 · 10−1 −.5945 · 10−2

7 −.2051 · 10−1 .4012 · 10−1 .1157 · 10−1

8 −.5171 · 10−1 .7078 · 10−2 .1593 · 10−2

9 −.5929 · 10−1 −.6046 · 10−2 .1382 · 10−2

10 −.2247 · 10−1 .4017 · 10−2 −.1490 · 10−2

Par. zi ai bi ci

1 −.1652 · 10−1 .2246 · 10−1 .3320 · 10−2

2 .3280 · 10−2 .5387 · 10−1 .9391 · 10−4

3 .1127 · 10−1 .2911 · 10−1 .2303 · 10−3

4 .1367 · 10−1 .1198 .9361 · 10−2

C0
0 5 .1606 · 10−1 .5107 · 10−1 .1440 · 10−3

6 .2990 · 10−1 −.1170 · 10−1 .1345 · 10−2

7 −.5982 · 10−2 .9021 · 10−1 .1428 · 10−1

8 .1923 · 10−2 .9601 · 10−1 −.4036 · 10−2

9 .1106 · 10−1 .2148 · 10−1 −.1501 · 10−2

10 .3809 · 10−2 −.2854 · 10−1 .2780 · 10−2

Par. zi ai bi ci

1 −.7257 · 10−4 −.1076 · 10−4 −.8750 · 10−4

2 .2234 · 10−3 −.4577 · 10−4 −.8053 · 10−5

3 .3718 · 10−4 −.3531 · 10−4 −.6497 · 10−5

4 .2259 · 10−4 .2031 · 10−4 −.7306 · 10−4

C1
1 5 .1216 · 10−4 −.2042 · 10−4 −.2856 · 10−4

6 .4075 · 10−4 −.1625 · 10−3 −.1121 · 10−3

7 −.1238 · 10−4 −.3676 · 10−4 −.2568 · 10−4

8 .1103 · 10−3 −.3679 · 10−3 −.5010 · 10−4

9 .3813 · 10−4 −.5706 · 10−5 .3202 · 10−4

10 .3531 · 10−4 .1373 · 10−3 −.3439 · 10−4

Par. zi ai bi ci

1 −.7557 · 10−2 .2648 · 10−2 −.5166 · 10−3

2 .3425 · 10−1 −.2038 · 10−2 .5412 · 10−3

3 .2830 · 10−1 −.9686 · 10−3 .2995 · 10−3

4 .3342 · 10−2 .5536 · 10−2 −.5538 · 10−2

C2
0 5 .1391 · 10−1 .7956 · 10−3 −.2012 · 10−2

6 .2375 · 10−1 .1775 · 10−2 .2675 · 10−2

7 −.3024 · 10−1 −.1924 · 10−1 .6680 · 10−4

8 −.9323 · 10−1 −.2108 · 10−2 .2173 · 10−2

9 −.8813 · 10−1 .4251 · 10−2 −.2462 · 10−2

10 −.2679 · 10−1 −.3504 · 10−2 .1984 · 10−2

Par. zi ai bi ci

1 −.6396 · 10−3 .7978 · 10−3 .6667 · 10−3

2 −.4143 · 10−2 .5649 · 10−2 −.5508 · 10−4

3 −.3708 · 10−2 .5227 · 10−2 .1462 · 10−3

4 −.4016 · 10−2 −.6414 · 10−2 −.8673 · 10−3

D0
0 5 −.3159 · 10−2 −.3022 · 10−2 −.9427 · 10−3

6 −.7352 · 10−2 .1584 · 10−1 .2274 · 10−2

7 −.1305 · 10−2 −.1363 · 10−1 .3488 · 10−2

8 −.4523 · 10−2 .1960 · 10−1 .1146 · 10−2

9 −.4581 · 10−2 −.2917 · 10−3 −.1778 · 10−2

10 −.1272 · 10−2 −.4082 · 10−2 .1184 · 10−2

Par. zi ai bi ci

1 .6607 · 10−7 −.1767 · 10−6 −.1271 · 10−4

2 −.1750 · 10−4 −.5895 · 10−5 −.8847 · 10−6

3 −.6507 · 10−5 −.5144 · 10−5 −.1517 · 10−5

4 −.3851 · 10−5 .1657 · 10−4 −.7559 · 10−5

D1
1 5 .4987 · 10−6 .2201 · 10−5 −.3089 · 10−5

6 .1953 · 10−6 −.3159 · 10−4 −.1827 · 10−4

7 −.2797 · 10−4 .3893 · 10−5 .1194 · 10−5

8 .1604 · 10−4 −.5762 · 10−4 −.1570 · 10−4

9 −.1183 · 10−4 −.9919 · 10−6 .9930 · 10−5

10 −.7835 · 10−5 .2179 · 10−4 −.7949 · 10−5
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Par. zi ai bi ci

1 .1980 · 10−3 .1510 · 10−3 −.2527 · 10−4

2 −.2572 · 10−2 −.5907 · 10−4 .1149 · 10−4

3 −.2024 · 10−2 −.2137 · 10−4 .1067 · 10−4

4 .1600 · 10−2 .5689 · 10−3 −.2189 · 10−3

D2
0 5 .1790 · 10−3 .1280 · 10−3 −.7452 · 10−4

6 .1228 · 10−2 −.3551 · 10−4 .9342 · 10−4

7 .9168 · 10−3 −.7961 · 10−3 −.1405 · 10−3

8 .4960 · 10−2 −.1981 · 10−3 .7174 · 10−4

9 .5225 · 10−2 .2966 · 10−3 −.8173 · 10−4

10 .1550 · 10−2 −.1694 · 10−3 .6938 · 10−4

We determine s00, s11 and s20 by the conditions:

δ00(s0) ≡ θ0 , δ11(s0) ≡ θ1 , δ20(s0) ≡ θ2 (58)

where θ2(a00, a
2
0, θ0, θ1) is parametrized following (6) and

(8), with the coefficients:

Par. zi ai bi ci

1 −.3160 .7038 · 10−1 −.2480 · 10−1

2 −.2355 .2380 · 10−1 .6701 · 10−2

3 −.2021 .1687 · 10−1 .5869 · 10−2

4 .4885 · 10−1 .6057 · 10−1 −.2094 · 10−1

θ2 5 −.1106 · 10−1 .2317 · 10−1 −.1128 · 10−1

6 .8406 · 10−2 .7702 · 10−1 −.2254 · 10−1

7 .3569 · 10−2 .1531 .1103
8 .3021 · 10−1 .1027 · 10−2 −.4945 · 10−2

9 .2762 · 10−1 .2859 · 10−2 −.1297 · 10−1

10 .7229 · 10−2 .1513 · 10−1 .1340 · 10−1

We have introduced the function θ2(a00, a
2
0, θ0, θ1) to

improve the accuracy on s20. The dependence of θ2 on the
S-wave scattering lengths and on the phases at the match-
ing point is smoother than the analogous dependence of
s20. A direct fit of s20 using the form of (6) and (8) would
therefore induce a loss of accuracy, compared to the pro-
cedure we follow here.
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